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ABSTRACT 

The linear search problem has been discussed previously by one of the present 
authors. In this paper, the probability distribution of the point sought in the 
real line is not known to the searcher. Since there is no a priori choice of 
distribution which recommends itself above all others, we treat the situation as a 
game and obtain minimax type solutions. Different minimaxima apply depend- 
ing on the factors which one wishes to minimize (resp. maximize). Certain 
criteria are developed which help the reader judge whether the results obtained 
can be considered "good advice" in the solution of real problems analogous 
to this one. 

1. Intraduetian. 

The linear search problem can be expressed in intuitive terms as follows: 

consider the real line as a highway, on which the searcher (a man in an automobile) 

and a goal (some object being sought) are located. The automobile has a certain 

fixed speed, and it is the purpose of the searcher to find the object as soon as 

possible. The problem is to devise a reasonable procedure for the searcher to 

follow. 

Of course, the problem as here formulated is not yet a mathematical one, for 

we have no criteria for the measurement of how well any chosen procedure 

accomplishes its object. To do this, we imagine that the goal is located along 

the line according to a (known or unknown) probability distribution F .  Then 

we want that search procedure which minimizes the expected time (or expected 

path length) to reach the goal, assuming the searcher starts at 0. 

In [1] and [2], some study was made of the situation for a known distribution 
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F ,  and certain theorems show conditions under which the minimum expected 

time is actually achievable. However, no algorithm has been found for extracting 

the minimizing search procedure. 

In this paper, we will take up the companion problem concerning an unknown 

distribution F .  Just as there is no natural choice for F itself, so there is no natural 

distribution of such distributions. We will treat the matter as a game between 

the searcher and a hider, who chooses a distribution so as to maximally frustrate 

search. Thus the problem is modified to fall within Game Theory criteria, and 

we seek minimaxima, etc., as a way of offering "advice"  to the searcher. 

In this work, an algorithm of sorts is exhibited for the modified problem. 

Whether this algorithm answers the question is a matter of taste, and the reader 

is left to give his own judgement. 

In each case, if the target point is put on the real line according to a probability 
+ t o  distribution F and sought for by a generalized search procedure x = {x~}i=_oo 

(see definitions in [2]), then the distance traveled from 0 to the point t ,  which is 

designated as X(x, t )  must be integrated to yield the expected length of path 

X(x) = f+__~ X(x, t )dF(t) .  This quantity is the "payof f"  of the game we men- 

tioned earlier, and it will be the purpose of the searcher to minimize it, and of 

his opponent to maximize it by a nasty choice of F .  

It is easily seen that X ( x , t ) > l t l  for every search procedure x,  so that 
+ o o  X(x) >= f _ ,  I t l dF(t) = MI(F).  On the other hand, if we define x(~,6) as the 

procedure whose ith entry is - 6 ( -  c¢) i , V - ~ < i < + oo, then X(x(2, 6)) < 9M1, 

for all choices of 6. Since the efficiency of any strategy is thus reasonably mea- 

sured against the size of M1, let us assume that M~ = 1. We wish to know for 

each F what is the value of Mo(F) = infxX(x), and we also want to know 

maxe Mo(F). Further, we wish to find ways of achieving or approximating these 
maxima and minima. 

2. How good is 9 as an estimate? 

Our first task is to verify that 

1. ]_,EMMA. For every 6 > 0 and every - ~ < t < + ~ ,  X(x(2,6),t) < 9It I. 
PROOF: Assume first that t > 0,  and let n be so chosen that 2"6 < t < 2"+26. 

Then S ( x ( 2 , 6 ) , t ) =  It[--62"+3+1t I = 8 6 2 n + [ t l < 9 1 t  I. If  

t < 0, choose n so that --2n+26 < t < --2"6 and make the same analysis. Q.E.D. 

Now we show converse to this lemma: 
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2. LEMMA. For every search procedure x ,  and each e > O, we can f ind a 

distribution F with Mt(F)  = 1 so that X(x )  > 9 - e. 

PROOF. To prove this lemma, we define for each search procedure X the 

number ra(x ) = suplq>=a(ltl-Xx(x,t)).  We will show that rl(x) > 9, and this 

will in turn imply our conclusion, as we shall see below. 

To show that rl(x) > 9, let x = { . . .X_ l , xo , x , , x2 , . . . } ,  where the numbering 

is so chosen that xl is the first entry greater than 1. We can assume that x is a 

strong search plan, i.e. that x. = x.+2 ~ x. = x .+l  = 0 (see [2]), since otherwise 

we could replace x by a search plan which, for eve y distribution F ,  has a lower 

value of X(x) ,  by simply eliminating Xn and X.+l.  

For every n > 1, we have x. # x.+ 2 . I f  n is large enough, say n > N ,  we have 

Ix .  l > 1. Then for t between x. and x.+2,  we have 

n + l  

x(x, t)  -- 2 Z {x, I + It I <= r,(x)lt I, 
i= - -o0 

so that 
n + l  

Z 
i ~ - - ~  

Ix,[ <= ½ ( r ~ ( x ) - l ) [ t  I <= ½(rx(x) -  1) [x . ] .  

We assume, contrary to the conclusion, that rx(x ) < 9, so that ½(r~(x) - 1) < 4. 

Denote k(rl(x ) - 1) as y = 4 - fl, and set 

1 n + l  

Y " - 2 .  Z l x . I  
i = - - o o  

Then y.  > 0 and the condition 

n + l  

Z 
i ~ - - cO 

gives 

2"+2 ½(Y.-1 + Y.+I) 

i = --QO 

n + l  

= 4  E 
i ~  - - o 0  

< 4"2"y.  - 

n + 2  

I x, I + z Ix, I 

Ix, I +?lx.+,l 

Ix, l- lx +ll 
n + 2  

z Ix, I 
f=--oO 

= 2"+2y. _ 2 "+ ' ? - ' f l y , ,+ l ,  
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½(Y.-1 + Y.+l) < Y. - -  ½Y-lflY~+l 

<= Yn" 

Thus, {y~} is a concave positive sequence, and if it is bounded away from 0 for n 

large enough, say by t />  0, then ½(Y.+l - Y~) < ½(Y. - Y.-~) - ½?-lilt/, so that 

½(Y.+l - Y.) < 0 for n sufficiently large, and thus y~ < 0 for n sufficiently large, 

contrary to hypothesis. But a positive concave sequence cannot have arbitrarily 

small terms. Thus we have reached a contradiction and the hypothesis ? < 4 

must be abandoned. 
Now let a number to be chosen with Ito[> 1 and [tol lX(x,  t o ) > 9 - e .  

Let 

Then 

F(t) = O, Vt < 0 

= 1 - I t o l - l , v 0  =< t<l to  I 

= l ,  Vl,ol =< t. 

f_.oo ~+~X(x,t)dF(t) ItldF(t)= 1, and = Itol-lX(x,  t o ) > 9 - e .  Q.E.D. 
oO 

3. LEMMA. I f  X is SO chosen that for every distribution F with MI(F ) = 1, 
we have X(x) < 9, then 

xn = Xo(-2)" ,  V - o o  < n < + oo. 

PROOf. We know from the proof  of Lemma 2 that r~(x) => 9. In fact for every 

a _>__ 0, we can define ra(x) = suPl,l>altl-lX(x,t). Then by the same proof, we 

have r~(x) >= 9, ¥a > 0, and thus to(x) >= 9 as well. If  ro(X) = 9, then {y~}, 

defined as in the proof  of Lemma 2, is positive for all - oo < n < + oo, and is 

convex in its entire range. It follows at once that ro(X) = 9 implies {y~} is a con- 

stant sequence, and xn = Xo(-2)% 

Suppose that it were possible that r~(x) > 9, a ___ 1. Then choose to > a >_ 1 

so that I tol- 'x(x, t) > 9, and define F again as in the last part of the proof  

of Lemma 2. This will give X(x) > 9 and MI(F)  = 1. Thus, r~(x) <= 9, Va >= 1. 
Now suppose that to(X)> 9. Let to again be chosen so that I to I-~X(x, to) >9 ,  

and set e = X(x, t o ) - 9 l t o l > O .  We know [to[ < 1, and since r2(x) > 9, we 

can find a t t > 2 satisfying [tl I-1x(x, tl)> 9 -  ½e. Let F be a distribution 
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assigning probabili ty ½ to to, I t a ] - l ( 1 - ½ l t o l )  to 

1 - ½ -  I t l [ - l ( 1  - ½[to[)) to O. Then Mt(F)  = 1 and 

J 
" - b o o  

(X(x, t )  - 9]tl)dF(t) = (X(x,  to) - 9[to[)"½ 
- -  o o  

so that 

423 

t 1, and the rest (i.e. 

+ (X(x, t l ) -  9 [ tl 1)[ t, I-'(1-½1 to]) 

> ½e-½elt, l . l t l l - l (1-½ltol)  
> O, 

+ooX(x, t)dF(t) > 9. 

It  follows that ro(X) > 9 is impossible, and ro(x ) = 9, which proves the lemma. 

Q.E.D. 

REMARI~. The distributions used as examples in the proofs of  Lemmas 2 and 3 

are atomic. Actually, a small amount  of tinkering could have been done to make 

them continuous, absolutely continuous, or even C ~ , with the same essential 

properties. 

Thus we see that in choosing a search plan, we can "play  it safe" by choosing 

one of the search plans x(2, 6). No other strategy is as safe as one of these. How- 

ever, even among the " sa fe"  strategies, some are better then others, and we will 

now consider the search problem as a game in which the searcher must choose 

a search strategy from among the safe ones, while his antagonist chooses any 

distribution F with MI(F)  = 1. 

4. THEOREM. I f  MI(F  ) = 1 and ~ > 0 ,  then for  at least one value of 6 > 0 ,  

the strategy x = x(a,6) yields X(x)  =< 1 + (~t + 1)/ln~. 

PROOF. We shall show more. By putting a measure on the parameter 6, we shall 

show that the average of X(x)  for x(a,6) satisfies the given inequality. The result 

will then follow from the mean value theorem. Let - m < q < + oo, and 6 = ~". 

Then define y(q) = x(a,6).  We see that the entries of y(q) and y(q + 2) are iden- 

tical, except that they have been moved over. 

Let Y(r/, t) = X(y(rl), t). Then for each t, Y(q, t) is periodic of  period 2. We 

are interested in min,  Y(r/) = X(yO;)).  For  each t > 0,  - oo < q < + oo, we 

have n + r /<  log, t < n + r /+  2, where n = n(t, rl) is the greatest odd integer 

less than log, t - r / .  Thus, 
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n+l  0~n+r/+ 1 
Y ( r / , t ) = 2  ]~ o ~ ' + " + t = 2 - - + [ t [ ,  

i=-oo 1 -- ~ - 1  

and similarly for t < O, so that Y is an integrable function of r/ and t together. 

We now wish to evaluate 

fo fo; 1 y(q)dt 1 = ½ y(tl ' t)dF(t)dtl" -Z  

- ao 

We invert the order of integration, and observe that since Y(t/, t) is periodic in 

t / for  each t, we have, for each t > O, 

~ i  II°g~t + 1 
Y(,1, t)d,7 = .j ~o~,- ~ Y(,1, t )d ,1 .  

For all l og j  - 1 < ~/< log j  + 1, we have n(t,q) = - 1 ,  so that 

Y(q, t) -- 2 + t 

Similarly, when t < 0, we have 
[ 0d+"+l ~ 

Y(rl, t) = 2 k ~  } + [t] 

whete n = n(t,q) is the smallest even integer with n + ~ < log,] t[ =< n + r /+  2. 

Thus, 
fo  z flog~ltl+2 / ~ + 1  ) 

Y(,1,t)dn = Y(,7,t)dn = 2It I k In 0c + 1 , 
dlog. I t I 

as before. Thus, we have 

for+: I Y(q)dq = ½ Y(q, t)dF(t)dq 

= ½ Y(tl, t)dtldF(t) 
d - ° o  i 

= oo ~-]-~ + 1 [ t ldF( t  ) 

[ a +  1 ~ a + l  
= \l---ff~a + 1] M I ( F ) -  ~ - ~  + 1 ,  

since Mz(F) = 1. 

and 

fl 
log-~t + 1 ] log~t + l 
og.,- ~ Y(rl' t)drl = 2 ( ( 1 _  ct" 

~- 1) In CUlog~t_ 1 + t) 

) = 2 k l n ~  + t  . 
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It  follows directly that for some value of t/, YQ/) = X(y(tl) ) < (o: + 1)/ln ~ + 1. 

Q.E.D. 

5. COROLLARY. Among the "safe" strategies, there is one (call it z) for  which 

X(Z) < 1 + 3/In2.  

It  happens, however, that  (~+  1)/lnc~ does not attain its minimum at e = 2, 

but does so for the solution eo of the equation % In c~ o = % + 1. Thus the minimum 

value of mo is no more than 

~ o + 1  
1 + - -  - l + a  o. 

ln% 

Furthermore,  the strategies x (%,5 ) ,  when mixed in the indicated way, will 

assure the searcher of  an expected outcome of 1 + ~o. In taking the lowest ex- 

pectation, however, he risks a loss as high as 

1 + 2a~ - - > 9 .  
ao - 1 

We now raise the question of whether there is not a better mixed strategy 

than that of the X(eo,5) mixed in the indicated way. The answer is " n o "  as is 

seen f rom the following theorem. 

6. THEOREM. For every e > 0, there exists a probability distribution F 

with MI(F ) = 1 so that for every search plan x ,  we have 

+ l + a o  
X(x)  >= 1 1 + ~ 1 + 

PROOF. Let e > 0, and set 

g g ge 1/~ 
- - .  , and B - co = 2 ( 1 + ~ ) '  b -  1 + e 1 + g" 

Set 

F(t) = O, V - r e < t <  - B  

O3 
V - B < t < -  - b  

t ~ 

= ½, V - b < = t < = b  

= 1 -  t ,  V b < = t < B  

= 1, V B < = t < + m  
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Since F'(0) = 0, it is immediately apparent from Theorem 1 of [1] that there 

exists a minimizing search procedure x,  and the presence of probability atoms 

at - B  and B assures us that the procedure has only finitely many entries. Let 

X ~-" (XI ,X2,X3,"%Xn-I ,Xn,  Xn+I). Note that I x.l = I x .+l l  = B, and that for 

all b <= t < B,  

F ( - t )  - F ( - B )  = F ( B ) -  F(t) = colt. 

We see at once that 

(~+ {) X(x) = MI(F)+ 2lxll i~T 

+ 2 X2 + 

... 

+ 21x.I 
O) 

I x n - t  !" 

Since 

MI(F)  = I t ldF( t )  
oo 

f/i = -tgdt B ~ d t  + -if.B+ 

= 2o~+2 CI B°°dt  
dht 

= 2o~ + 2co(ln B - In b) 

(D +~.B 

we have 

e e 1 
• - -  = 1 = 2 2 . 1 + e )  t - 2 A . . + e  ) l z t l -  ~ ' 

x(~)= ,+2@-, + I__~ + Ix21 Ix.l~ 
V2i + ' ' +  Ix.-~ll 
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Since 

; +i-;-d,I 
> 

++ l ._lll = b " 

X(x)  > 1 + 2o)(n - 1 + ne lleÈ) 

Ix21 Ixnl )1In 
Ixll IXn--ll 
= e l I e n  ' 

1 - 2w + 2~on(1 + e l/en) 

+ 1 ellen) 1 - 1 +------~ - ~ - ~ ' n e ( 1  + . 

The definition of ao gives us 

ne(1 + e 1/an) > inf 1(1 + e t) 
t 

so that 

= i n f l n - ~ ( l + s )  = 1 + % ,  

1 + %  
= - ~ + - -  Q.E.D. X(x)  > 1 1 +  e 1 + e 

Now we have shown that max F mo(F ) = 1 + %,  and have exhibited a mixed 

strategy whereby the seeker can obtain this minimax. Is there also a probability 

distribution F which maximizes mo(F ) ? 

7. THEOREM. For every probability distribution F,  mo(F ) < 1 + %. 

PROOF : We may assume, of course, that F displays no mass point at the origin. 
¢ k+rDoo We already know that for some r/the sequence y = ~ct o .t-oo satisfies X(y)< 1 +%. 

Choose N so that 

a = F(~o 2~+") - F ( %  2N+1+") < 1__ 
~0 

and consider the truncated sequence 37 = {~k+~}~_2N. We will show that 

X(fO < X(y)  thus completing the proof. We have, namely, 

X(y, t) < X(y,  t) for 

X(y, t) < 2% 2N+" + X(y,  t) for 

-- 2(N + I)  

X(p,t)  < X ( y , t ) -  2 Z ..k+~ for 
- oo 

O <  t <Cto 2N+~ 

-Cto 22v+~+1 < t _< 0 

t ~  L --I"  N -  2N+ t/+ 1 :~ ~ -  2N +r/] • 

Integrating dF(t), recalling the definition of A and using 
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we obtain 

k = - o o  0~ 0 --  1 

~o2N+t/ 
X 0  7) __< 2~o2N+"A -- 2 ~o - 1(1 - A) + X(y) 

~o2N+t/+l -2N+t/ 
= 2 A - 2 ~x° + X(y),  

0% - 1 ~o  - 1 

and that is less than X(y),  since A < 1/%. Q.E.D. 

It now appears that we have rather hard estimates on the steps that the seeker 

can take to limit his losses in dealing with this problem. He can either accept 

an expected path length of 1 + c~ o while risking a possible worst outcome of  

nearly 1 + 2~02/(~o-1), or else hold his maximal losses to 9; though to do so, 

he must accept an expected path length of 1 + 3/ln 2. Or he may compromise 

by choosing 2 < ~ < ~o, and playing the strategy indicated in Theorem 4, thus 

an expected loss of 1 + (~ + 1)/ln ~ and a maximal loss of no more than 1 + 2~2/(a-1). 

It might be, of course, that he would do very much better by making canny 

guess as to what the distribution F is likely to be. Whether or not this is true 

depends in part on one's definition of the words "much better".  

We assume at the outset that the searcher has no knowledge, and this entitles 

us at least to the belief that he cannot distinguish between the ends of the line. 

Thus, if co ~ F,~ is a mapping from some probability space f~ into the set of all 

probability distributions, then we can legitimately define our probability distri- 

bution over f~ × { + ,  - } ,  where { + ,  - }  is a random space, and 

Fc~,,+(t ) = F~,(t); F~,_>(t) = F~,(-t).  

The mapping co ~ F,o must be chosen at least measurable enough so that the 

function f+~ X(x,t)dFo,(t) is a measurable function of co for each search pro- 

cedure x ,  and we will assume that the generalized function 

X(x,t)F~ 

is measurable in t and ~o together for each x.  It follows that 

X(x, t)F(~,± 

is measurable in t, ~o, and + together, and since it is non-negative, Fubini's 

Theorem applies. 
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Thus, 
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fn  f + ~ X(x, t)dF~(t)Pr d~ 
={+,-} -co 

:of f = X(x, t)dF~(t) Pr d~  
oo + , - -  

fo f+Sl,l ,o 
fu  2MI(F,~)Pr de~ = 2, 

since MI(F~, ) - 1. Thus, no assessment of likely distributions will bring the seeker 

below an expected path length of 2 unless it correctly guesses which is the favored 

end of line. A similar analysis holds if there is no favored end. By comparison, 

the constants discovered are 9,1 + 3/ln2 ( =  5.33), 1 + 2~o2/(~o-1) ( =  10.90), 

and 1 + ~o ( =  4.59). The reader may judge for himself whether the indicated 

courses of action represent a practical solution to the problem. 
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